Current Status and Challenges of Urban Wastewater Treatment in China

Dr. Xingcan Zheng

North China Municipal Engineering Design and Research Institute Ltd.
Main Content of the Presentation

1. Development of Urban Wastewater Treatment

2. Key Factors Affecting WWTP’s Performances

3. Typical Examples of Urban WWTPs and WRPs
1. Development of Urban Wastewater Treatment

Effluent Discharge Standard of Urban WWTPs

<table>
<thead>
<tr>
<th>Effluent Limits</th>
<th>COD</th>
<th>BOD$_5$</th>
<th>SS</th>
<th>NH$_3$-N</th>
<th>TP</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBJ 4 -73</td>
<td>100</td>
<td>60</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB 8978 - 88</td>
<td>120</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB 8978 - 1996 Class II</td>
<td>120</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>GB 8978 - 1996 Class I</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>GB18918 - 2002 Class II</td>
<td>100</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>GB18918 - 2002 Class IB</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>8(15)</td>
<td>1.0</td>
<td>20</td>
</tr>
<tr>
<td>GB18918 - 2002 Class IA</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td>5(8)</td>
<td>0.5</td>
<td>15</td>
</tr>
<tr>
<td>Future</td>
<td>?</td>
<td>20</td>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>5</td>
</tr>
</tbody>
</table>

Unit: mg/L
Rapid Growth of Urban WWTPs in Mainland China

Amount of Wastewater Treatment Plants (WWTPs)

Capacity

NMSUWT started in 2007

157 million m3/d

3781

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013

Capacity (million t/d)

0.0
25.0
50.0
75.0
100.0
125.0
150.0
175.0
200.0

0
500
1000
1500
2000
2500
3000
3500
4000

North China Municipal Engineering Design & Research Institute
Trend of Urban WWTP’s Development

<table>
<thead>
<tr>
<th>Year</th>
<th>WWTPs</th>
<th>Total capacity (million m³/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>37</td>
<td>0.64</td>
</tr>
<tr>
<td>1990</td>
<td>87</td>
<td>3.17</td>
</tr>
<tr>
<td>2000</td>
<td>402</td>
<td>17.67</td>
</tr>
<tr>
<td>2005</td>
<td>792</td>
<td>57.25</td>
</tr>
<tr>
<td>2010</td>
<td>2624</td>
<td>122.13</td>
</tr>
<tr>
<td>2015</td>
<td>5000</td>
<td>170.00</td>
</tr>
<tr>
<td>2020</td>
<td>10000</td>
<td>200.00</td>
</tr>
</tbody>
</table>
WWTPs Need to Be Upgraded to Higher Standards

- Total capacity divided by effluent discharge standards

![Bar chart showing WWTP capacity](chart.png)

Upgrading to higher standard
WWTPs Need to Be Upgraded to Higher Standard

Number of WWTPs divided by effluent discharge standards

![Bar chart showing upgraded WWTPs by standard and year]

Upgrading to higher standard
Processes for Meeting the Discharge Standards

- **Class II Discharge Limits**
 - Organic matter → biological treat (AS or BF)

- **Class IB Discharge Limits**
 - Organic & nutrient → BNR systems

- **Class IA Discharge Limits**
 - Reclaimed water or sensitive regions (lakes)
 → EBNR + advanced treatments

- **More stringent limits for specific situations**
 - High quality reclaimed water
 - Highly sensitive regions
 - Special requirement

- MF/UF & RO
- Strict N & P control
- Chemical oxidation
Process Selection for Biological Nutrient Removal

Modified A\(^2\)/O Process for improving the N & P removal

* Process Design for Tai’an WWTP in 1988

- Anoxic/Pre-denit.
- Anaerobic
- Anoxic
- Oxic Zone (nitrification)
- Mixed liquor recycling
- Carbon source addition
- Chemical addition
- Return sludge
- Excess sludge
- Clarifier
- Effluent

North China Municipal Engineering Design & Research Institute
Process Selection for Biological Nutrient Removal

EBNR process for meeting new effluent limits

- Influent splitting
- Pre-Den. (Pre-denitrification)
- An (Anammox)
- Ax (Aerobic)
- Oxic (Oxidation)
- Mixing Liquor Recycling
- Carbon source addition
- Chemical addition
- Clarifier
- Effluent
- Inorganic & Sludge
- Return Sludge
- Excess Sludge
2. Key Factors Affecting WWTP’s Performances

- **Fluctuation of influent quality & flow-rate**
 - Wide distributions & variations
 - Change with regions, locations and time

- **Low BOD\(_5\)/TN ratio**
 - Degradation in septic tank and sewerage
 - Biological pretreatment of industrial effluent

- **High SS/BOD\(_5\) ratio → inorganic fraction**
 - Combined sewer system & urban runoff

- **Low temperature and industrial inhibitors**
 - Regions with low water temperature
 - Difficulty of industrial effluent control
Wastewater Differences with Location and Time

Wastewater COD Concentration by Regions
Wastewater Differences with Location and Time

- Wastewater TN Concentration by Regions

![Graph showing the TN concentration in wastewater across different regions.](image-url)
Key Factors Affecting WWTPs Performances

- High SS/BOD$_5$ ratio

![Graph showing the percentage of WWTPs affected by high SS/BOD$_5$ ratio](image-url)
Key Factors Affecting WWTPs Performances

- Influent SS/BOD$_5$ ratio of Wuxi Lucun WWTP

![Graph showing Influent SS/BOD$_5$ Ratio vs Date]

Typical MLVSS/MLSS: 0.3-0.5
Key Factors Affecting WWTPs Performances

- Low BOD$_5$/TN ratio of WWTP’s influent
Influent and Effluent NH$_3$-N (Average)

North China Municipal Engineering Design & Research Institute
3. Examples of Urban WWTPs and WRPs
1980s: Tianjin Jizhuangzi WWTP

First large-scale WWTP (AS)
Started operation in 1984
Capacity: 260,000 m3/day
Extended to 540,000 m3/day BNR in 2000
Development of Tianjin Jizhuangzi WWTP

2010s
Tianjin Jizhuangzi Water Reclamation Plant

Started to operation in 2002

Chemical Treatment

Micro-filtration in 2002

Submersible micro-filtration

RO system in 2010s
Upgrading from SF to SMF systems

Sand filter

Membrane system

SMF
1990s: Qingdao Licunhe WWTP

First phase: 80,000 m³/day (1998)

Second phase 90,000 m³/day (2008)
Qingdao Licunhe WWTP

- **Pre-denitrification for return AS**
- **Denitrification**
- **Anaerobic Zone**
- **Oxic Zone**

- Designed in 1994; started operation in 1998
- BOD: 488 mg/L, TSS: 558 mg/L, TN: 87 mg/L, TP: 7.0 mg/L
- 170,000 m3/day
Qingdao Licunhe WWTP

Third Phase: 80,000m³/day under design
Total capacity: 250,000m³/day

- Typical Operation Modes
 - VIP process
 - Modified A²/O process
 - + IFAX in year 2010
Late 2000s: Upgrading of Wuxi Lucun WWTP

Conventional AS (1992)
A²/O process (1998)
Modified A²/O+IFAS (2008)
Wuxi Lucun WWTP, Jiangsu

Upgrade to Class I A

- High SS/BOD$_5$
- Low BOD$_5$/TN
- Low Temperature
Process Upgrading of Lucun WWTP

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Process selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Treatment</td>
<td>Screens: replacement, new fine screens</td>
</tr>
<tr>
<td></td>
<td>Pumping station; sand & grid removal</td>
</tr>
<tr>
<td></td>
<td>Primary clarifiers: equipment renewal, odor control, fermentation function</td>
</tr>
<tr>
<td>Biological Treatment</td>
<td>Modified A²/O system</td>
</tr>
<tr>
<td></td>
<td>IFAS system for nitrification</td>
</tr>
<tr>
<td></td>
<td>Carbon source and metal salt addition</td>
</tr>
<tr>
<td></td>
<td>Denitrification filters</td>
</tr>
<tr>
<td>Advanced Treatment</td>
<td>Mechanical and Membrane filtration</td>
</tr>
<tr>
<td></td>
<td>Chlorine dioxide ; UV disinfection</td>
</tr>
</tbody>
</table>
Primary Fermentation Clarifier System

Fermentation Clarifier
Process for Biological Nutrient Removal

Modified A²/O Process

Influent

Anoxic/Pre-denit. → Anaerobic → Anoxic

Mixed liquor recycling

Oxic Zone (nitrification)

Clarifier

Effluent

Return sludge

Excess sludge
Upgrading of Lucun WWTP, Wuxi City

Layout of biological treatment process

- **IFAS system**
- **Oxic Zone** (low aeration)
- **Oxic or Anoxic**
- **Anoxic Zone**
- **Anaerobic**
- **Pre-denit.**

HRT: 0.5/0.5/4.6/4.6 hour

Influent splitting

Return Sludge
Upgrading of Lucun WWTP, Wuxi City

- **IFAS system to improve the nitrification**

 - IFAS system
 - Biofilm carriers
 - Steel Sieve

North China Municipal Engineering Design & Research Institute
Upgrading of Lucun WWTP, Wuxi City

Mechanical filtration system
Qingdao Tuandao WWTP

Strong wastewater
TN: 50–120 mg/L
Qingdao Tuandao WWTP

Modified A²/O System
Qingdao Tuandao WWTP

IFAS for enhancement of total nitrogen removal
Upgrading of Chengbei WWTP, Wuxi City
2010s: Tianjin Jinnan WWTP

Design Capacity:
First stage 550,000m³/day

EBNR
Water reuse
Phosphorus recovery
Anammox
Sludge digestion
Green design
System Intergrading in Tianjin Jinnan WWTP

Five-stage Bardenpho
550,000 m³/d

Anaerobic digestion (10% solid)
160 DT/d

Boiler

Dewatered Sludge
drying using biogas

Biogas purification

Side-stream
2000 m³/day

CO₂ removal

B-LNG

Dried sludge

Struvite

Phosphorus recovery

Annammox

Reclaimed

Class I A

UF/RO

Side-stream

Hot water

Dewatered Sludge

drying using biogas

Steam

Hot water

North China Municipal Engineering Design & Research Institute
Thank you for your attention